草榴社区

Optimizing Physical Chip Design Verification with AWS Cloud

Ahmed Elzeftawi

Apr 05, 2022 / 1 min read

Chip designs are increasing in complexity and size, which has resulted in additional transistors driving a need for greater processing power and memory. Greater silicon complexity makes physical verification with electronic design automation (EDA) applications more essential as any delays close to tape-out significantly impact production timelines.

Silicon designers now require increased CPU and memory resources to verify their advanced processor designs. Design rule checking (DRC) and layout versus schematic (LVS) jobs for sophisticated designs can now span several days for a full-chip design and require hundreds or thousands of CPU cores to complete in a reasonable time. Enabling designers with a fast and efficient way to verify their designs helps reduce verification time and costs (including hardware, software, and engineering hours).

People looking at computer codes

On-premise systems have traditionally hosted EDA workloads because they required specific performance, memory, and software parameters. But now, with the scale and flexibility of the AWS Cloud for silicon design implementation and verification, customers can leverage the AWS cloud for their EDA workloads and quickly scale their physical verification jobs and reduce their time to results.

AWS introduced  to address multifaceted EDA workload requirements. AWS recognized that customers performing physical verification on advanced process node designs require higher clock speeds, as well as larger CPU and memory resources. Powered by 2nd generation Intel Xeon scalable processors, X2iezn instances use a frequency of up to 4.5 GHz, the highest in the cloud. They feature up to 1.5TB of memory and deliver up to twice the performance per vCPU than X2e instances. X2iezn instances offer 32GiB memory per vCPU, and enable up to 48 vCPUs and 1536 GiB RAM. X2iezn instances are built on the , delivering up to 100 Gbps of networking bandwidth and 19 Gbps of dedicated . X2iezn instances are ideal for workloads that require high performance per thread and a high memory. AWS worked with 草榴社区, a leader in EDA, to scale 草榴社区 IC Validator? physical verification solution on Amazon EC2 X2iezn instances.

In our blog post,  we describe the testing that 草榴社区 performed on X2iezn using IC Validator. 草榴社区 achieved a 15% performance improvement when executing DRC on X2iezn versus Amazon EC2 R5d instances. Not only did 草榴社区 see a performance improvement, using IC Validator’s unique Elastic CPU management technology the company was able to obtain a 32% resource savings, enabling designers to save time and optimize resource usage.  for more details.

Continue Reading