
www.embedded-world.eu

 Continuous Integration and Test

from Module Level to Virtual System Level

Johannes Foufas, Martin Andreasson

Volvo Car Corporation

Gothenburg, Sweden

Michael Hartmann, Andreas Junghanns
QTronic GmbH

Berlin, Germany

Abstract— Software-in-the-Loop (SiL) is a test strategic sweet

spot between Model-in-the-Loop (MiL) and Hardware-in-the-

Loop (HiL) tests. We show in this paper how to use automatic C-

code instrumentation to harness the superior properties of SiL

technology for Module Tests even when the C-code is generated

in a few, large controller functions combining the modules to be

tested.

Furthermore we show how to re-use module test

specifications in integration and system tests by separating the

test criteria from the test stimulus. We call these test criteria

requirements watchers and define them as system invariants.

This powerful technique, combined with efficiently handling

large numbers of controller variants by annotating watchers and

www.embedded-world.eu

the respective variable. This way, MISRA compliance of
production software is ensured even if the instrumented code
makes it into release builds on accident.

As code generators tend to use temporary, local variables
where signals are not specifically made measurable, further
analysis of the generated code is necessary. In cases where
such a temporary variable is always equal to a measurable
signal, it has to be set to the correct value as well. This
specifically applies to signals transcending subsystem borders,
which can be represented by two different variables in code.

Fig. 4: Instrumentation of temporary variables

State Machines can by bypassed entirely so no transitions
are necessary to provide the system under test with the correct
state and/or corresponding flags.

After the code is instrumented, the virtual basic software is
automatically set up with regards to task scheduling and
supplier-dependent modifications. Compilation results in a
virtual ECU containing the entire OEM-part of the control
software which can be coupled with a plant model and/or other
ECUs for system-level simulation.

Without recompilation, engineers can trim the V-ECU to fit
their use-case. Depending on a specification file provided by
the user, the Virtual ECU will reconfigure its scheduler to only
execute a subset of the included functions. The same
specification can be extended by a detailed interface
specification listing the ports of a subsystem. If this
specification is present, all bypasses on the input side are
activated and the variables are overwritten by stimuli during
simulation.

IV. DESIGN OF STIMULUS-INDEPENDENT TESTS

The instrumentation method described reduces the effort in
test design significantly. Unit-Tests of small subfunctions can
be created through traditional scripting and deployed as part of
an automated test framework. While this method can produce
comprehensive results in regards to verification and coverage,
it relies heavily on developers being able to foresee all possible
problems.

During the specification phase, requirements are written in
a broad scope. Often a requirement will define a certain
behavior that shall be true under certain conditions. In essence:

Condition A => Behavior B

Defining test cases around such requirements would be
difficult, especially if the condition contains several continuous
signals. The widespread approach of testing by creating a

stimulus and checking for a specific reaction fails to capture a
large number of possible scenarios as engineering hours and
therefore the number of defined test cases are limited.

In addition, a stimulus-reaction based test becomes obsolete
once the object under test is integrated into a system, as the

www.embedded-world.eu

achieved without specifically designing additional tests. The
UHTXLUHPHQW�GHILQLWLRQV�FDQ�DOVR�EH�UHXVHG�ZLWK�7HVW:HDYHU¶V�
scenario generation for focused explorative tests, further
increasing coverage and robustness.

V. CONTINUOUS INTEGRATION AND VERIFICATION

At VCC Powertrain, code is deployed to a Jenkins-

