
WHITE PAPER

Improving Fuzz Testing of Infotainment Systems
and Telematics Units Using Agent Instrumentation
By Rikke Kuipers and Dennis Kengo Oka, Synopsys

Table of contents

Overview .. 1

Introduction ... 1

Background and problem statement ... 2

Overview of the Agent Instrumentation Framework ... 3

Requirements, architecture, and configuration ... 3

Synchronous mode .. 4

Asynchronous mode .. 4

Examples of Agents .. 5

AgentCoreDump ... 5

AgentLogTailer .. 5

AgentProcessMonitor.. 5

AgentPID .. 6

AgentAddressSanitizer .. 6

AgentValgrind .. 6

An example config.json configuration file ... 6

Implementation and test results .. 7

Bluetooth fuzzing ... 8

Wireless fuzzing ... 9

Fuzzing MQTT ... 10

File format fuzzing ... 12

Conclusion ... 12

 | synopsys.com | 1

Overview
In the past few years, cyber security has become more intertwined into each step of the automotive development process. In

https://twitter.com/SW_Integrity
https://www.facebook.com/��������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
https://www.nhtsa.gov/staticfiles/nvs/pdf/812333_CybersecurityForModernVehicles.pdf
https://www.vda.de/dam/vda/publications/2017/VDA-Position-on-Automotive-Security/VDA%20Position%20on%20Automotive%20Security.pdf
https://www.sae.org/standards/content/j3061_201601/
https://www.sae.org/standards/content/j3061_201601/
https://www.iso.org/standard/70918.html

 | synopsys.com | 2

By contrast, in this paper, we focus on fuzz testing of the connected car, specifically in-vehicle infotainment (IVI) systems and
telematics units. We present the concept of the Agent Instrumentation Framework, which can be used to better instrument these
systems to allow for more efficient and accurate fuzz testing. That is, for these types of systems, additional approaches can be
taken to improve instrumentation. Since these systems are typically based on operating systems providing more functionality,
such as Linux and Android,4 using the appropriate tools, it is possible to collect information from the SUT to determine whether
any exceptions were detected during fuzz testing. Additionally, more details about the detected exceptions can be fed back to the
fuzz testing tool and stored in the log file. This additional information helps developers better understand and identify the root
cause and eventually fix the problem.

In this paper:

• We introduce the Agent Instrumentation Framework and explain how it can be used to improve fuzz testing of IVIs and
telematics units.

• We show how additional information can be collected on the target system and used to determine whether there are
exceptions and help developers identify the underlying cause of any issues detected.

• We built a test bench based on this approach and fuzz tested several SUTs. We highlight some examples of our findings
that would not have been detected without agent instrumentation.

Background and problem statement
Many automotive organizations have made fuzz testing a mandatory step in their software development process or are moving
toward doing so. In other industries, such as network and telecommunications or enterprise, fuzz testing has already been
integrated into the software development process and proven to be an effective approach to identifying bugs and vulnerabilities
quickly. These target systems are typically easy to instrument by monitoring just the same protocol that is being fuzzed. This
approach is common when fuzzing IT solutions such as a web server or a specific communication library.

In many cases, monitoring the same protocol that is being fuzzed is effective. For example, monitoring HTTP requests and
corresponding HTTP responses could help identify potential unknown vulnerabilities in a web server. Furthermore, the famous
Heartbleed vulnerability (CVE-2014-0160), which was found by fuzzing the OpenSSL library, was identified by monitoring the
responses to the heartbeat request message.5 By contrast, automotive systems are often more complicated and interconnected
with other systems and therefore not easy to instrument. As a result, without proper instrumentation, many unknown
vulnerabilities and potential issues cannot be identified on these automotive systems.

As shown in previous research,6 without proper instrumentation of deeply embedded ECUs using HIL systems, several potential
issues go undetected. Similarly, without proper instrumentation of IVIs and telematics units, numerous potential issues go
undetected.

https://twitter.com/SW_Integrity
https://www.facebook.com/��������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

https://twitter.com/SW_Integrity
https://www.facebook.com/��������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

https://twitter.com/SW_Integrity
https://www.facebook.com/��������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

https://twitter.com/SW_Integrity
https://www.facebook.com/��������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 6Configurable options are the target process’s name, memor y threshold, and star t delay in seconds before the process is respawned.AgentPIDLike the Process Monitor Agent, the PID Agent is used to monitor processes running on the SUT, but with more options. Due to the working nature of this Agent, it can only be run in synchronous mode; otherwise, it might generate false positives.Before each test case is executed, a mapping is made of each predefined process with its associated process identifier (PID) and the PIDs of its children. A test case is executed, after which the same mapping is performed again.If a process has died between the two points of measurement, its PID will not be present in the new mapping. Alternatively, a process might have died but been restar ted and issued a new PID, which is common in high-availability configurations where a process daemon watchdog is present. In both cases, a fail verdict is issued, accompanied by information on the event and process itself.Configurable options are the processes to be monitored.AgentAddressSanitizerThe Address Sanitizer Agent can be used to find memory addressability issues and memor y leaks in software, using Google’s ASAN framework. This allows us to find such issues as these:• Use after free (dangling pointer dereference)• Heap buffer overflow• Stack buffer overflow• Global buffer overflow• Use after return• Use after scope• Initialization order bugs• Memory leaksA requirement for the correct operation of this Agent is to compile the target software with additional compiler flags. Similar to the PID Agent, this Agent can only be run in synchronous mode.This Agent can work in two modes. To find memory leaks exclusively, the user must kill the target process after each test case and analyze ASAN’s output. The Agent does this automatically and sets up the environment for the next test case.The second mode finds all other addressability issues. The Agent will configure ASAN using environment variables to kill the process on finding any issue. As the process can stay running, the speed of this mode is considerably higher than the one for finding memory leaks.In both cases, the fail verdict is accompanied by a crash trace. If available, detailed crash information will be repor ted back to the fuzzer.AgentValgrindLike the Address Sanitizer Agent, this Agent finds memor y leaks and addressability issues. The difference is the mode of operation and speed. The Valgrind Agent uses various checkers and profilers from the Valgrind project, which effectively emulates a hardware layer for the program to run on. This Agent is quite heavy and adds lots of overhead to each test case; thus, it is not ideal to run on an embedded device, despite its native suppor t for lots of architectures. The ability to instrument processes without the need for recompilation is a large plus over the use of ASAN if time is no limitation or if source code is unavailable.An example config.json configuration fileFigure 3 shows an example config.json file.

https://twitter.com/SW_Integrity
https://www.facebook.com/��������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://github.com/google/sanitizers
https://github.com/google/sanitizers

https://twitter.com/SW_Integrity
https://www.facebook.com/��������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
/software-integrity/security-testing/fuzz-testing.html

https://twitter.com/SW_Integrity
https://www.facebook.com/��������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

https://twitter.com/SW_Integrity
https://www.facebook.com/��������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

https://twitter.com/SW_Integrity
https://www.facebook.com/��������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 11The Agent reported several failing test cases, after which it continued execution. The test cases all used a similar anomaly—namely, an underflow anomaly where bytes of the packet were removed before it was sent to the SUT, as illustrated in Figure 8.Figure 8. Example MQTT anomaly in Defensics.In each test case, the underflow was a byte larger than the previous. In total, five test cases failed, according to the Agent we used, as shown in Figure 9.Figure 9. Five test cases marked as failing in Defensics.

https://twitter.com/SW_Integrity
https://www.facebook.com/��������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 12

File format fuzzing
A popular function of infotainment systems is the ability to play rich media content. Simpler systems play only audio file formats,
but more expensive systems with larger displays can also display video and image content. The file format parsers on these
devices are vulnerable to exploits embedded in the inputs they receive.

Defensics has several file format fuzzers, which can generate fuzzed versions based on the full specifications of various popular
file formats. It can simply write these to a disk or use other logic to have these sent to software inputs and determine a verdict.

To test audio and video playback functionality, we created logic to send fuzzed files to various infotainment systems,
automatically play these test cases, and assess the verdict using Agents.

Conclusion
In this paper, we introduced the Agent Instrumentation Framework and explained how it can be used to improve the fuzz testing
of IVIs and telematics units. We explained how to better instrument these target systems to allow for more efficient and accurate
fuzz testing. One or more Agents deployed on the SUT are used to collect additional information to determine whether test
cases on the SUT caused an exception. This information is also provided to the fuzz testing tool and stored in the log file, helping
developers identify the underlying root cause of the issues detected and fix problems more efficiently. To show the effectiveness
of the proposed framework, we built a test bench based on this approach and performed fuzz testing of several SUTs. We
presented our findings and highlighted several examples where issues on the SUTs would not have been detected without agent
instrumentation.

The Agent Instrumentation Framework is suitable for IVIs and telematics systems, which are typically based on operating
systems providing more functionality, such as Linux and Android, making it possible to run agents on the SUT. We believe that
the growth in connected cars and autonomous driving, which continues to drive large volumes of software development in the
automotive industry, coupled with an increasing awareness of cyber security in the automotive development process, will lead
automated fuzz testing to become a mandatory step for these types of systems. Our proposed framework can help support
automated fuzz testing for SUTs running richer operating systems such as Linux and Android.

References

1 D. K. Oka, “Security in the Automotive Software Development Lifecycle,” in SCIS, Niigata, Japan, 2018.

2 S. Bayer, T. Enderle, D. K. Oka, and M. Wolf, “Security Crash Test—Practical Security Evaluations of Automotive Onboard IT
 Components,” in Automotive—Safety & Security 2015, Stuttgart, Germany, 2015.

3 D. K. Oka, A. Yvard, S. Bayer, and T. Kreuzinger, “Enabling Cyber Security Testing of Automotive ECUs by Adding Monitoring
 Capabilities,” in escar Europe, Munich, Germany, 2016; D. K. Oka, T. Fujikura, and R. Kurachi, “Shift Left: Fuzzing Earlier in the
 Automotive,” in escar Europe, Brussels, Belgium, 2018.

4 Automotive Grade Linux, Automotive Grade Linux, accessed May 6, 2018; Automotive Grade Linux, Automotive Grade Linux
Hits the Road Globally with Toyota; Amazon Alexa Joins AGL to Support Voice Recognition, accessed May 7, 2018; GENIVI,
GENIVI, accessed May 6, 2018; Open Automotive Alliance, Introducing the Open Automotive Alliance, accessed May 6, 2018.

5 Synopsys, Heartbleed Bug, accessed May 7, 2020.

6 Oka, Yvard, et al., “Enabling Cyber Security Testing”; Oka, Fujikura, and Kurachi, “Shift Left.”

https://twitter.com/SW_Integrity
https://www.facebook.com/��������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://www.automotivelinux.org/
https://www.automotivelinux.org/announcements/2018/01/10/automotive-grade-linux-hits-road-globally-toyota-amazon-alexa-joins-agl-support-voice-recognition/
https://www.automotivelinux.org/announcements/2018/01/10/automotive-grade-linux-hits-road-globally-toyota-amazon-alexa-joins-agl-support-voice-recognition/
https://www.genivi.org/
https://www.openautoalliance.net/
http://heartbleed.com/

Synopsys helps development teams build secure, high-quality software, minimizing risks while
maximizing speed and productivity. Synopsys, a recognized leader in application security,
provides static analysis, software composition analysis, and dynamic analysis solutions that
enable teams to quickly find and fix vulnerabilities and defects in proprietary code, open source
components, and application behavior. With a combination of industry-leading tools, services,
and expertise, only Synopsys helps organizations optimize security and quality in DevSecOps
and throughout the software development life cycle.

For more information, go to www.synopsys.com/software.

Synopsys, Inc.
185 Berry Street, Suite 6500
San Francisco, CA 94107 USA

Contact us:
U.S. Sales: 800.873.8193
International Sales: +1 415.321.5237
Email: sig-info@synopsys.com

©2020 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available at
www.synopsys.com/copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners. June 2020

 |

http://www.synopsys.com/software
mailto:sig-info%40synopsys.com?subject=
http://www.synopsys.com/copyright.html
https://twitter.com/SW_Integrity
https://www.facebook.com/��������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

	_GoBack
	Overview
	Introduction
	Background and problem statement
	Overview of the Agent Instrumentation Framework
	Requirements, architecture, and configuration
	Synchronous mode
	Asynchronous mode

	Examples of Agents
	AgentCoreDump
	AgentLogTailer
	AgentProcessMonitor
	AgentPID
	AgentAddressSanitizer
	AgentValgrind
	An example config.json configuration file

	Implementation and test results
	Bluetooth fuzzing
	Wireless fuzzing
	Fuzzing MQTT
	File format fuzzing

	Conclusion

