
WHITE PAPER

synopsys.com

Introduction
Most of today’s largest semiconductor devices are highly complex system on chip (SoC) 
designs, which means that they include one or more embedded processors. This indicates that 
software provides some of the key functionality of the chip. The system cannot be fully verified 
or validated without both hardware and software. However, software development generally 



2

62.20% 16.50% 

15.20% 

6.10% 

Overall embedded 



3

 

-
!

Third party embedded software development tools

VDK Debugger

• Non-intrusive and
 deterministic hardware/
 software debug
• Python scripting 
 to inject errors

VDK Use—Highest Productivity

Integration with software
engineer tools

Full platform debug with
fault injection

Support for extended use cases

• Virtual and real-world IO
• Hybrid emulation and prototyping …

• Software debugging, test automation, coverage, 
 protocol testing, …

Figure 2: Key VDK features and links to other tools

Virtualizer Studio supports device virtualization using VirtIO, the standardized open interface for simplified devices such as disks, 
networks and graphics processing units (GPUs). By replacing the detailed device drivers with the VirtIO models, higher level software 
such as apps runs faster in the virtual prototype. The industry provides standard models for several types of devices, and these are 
provided as part of Virtualizer Studio. Example models include VIRTIO_BLK, which implements a block device such as a disk drive and 
uses a file on the host system for the data, and VIRTIO_INPUT, which implements human input devices such as keyboards and mice. 
It is possible to implement a virtual LCD touchscreen using the keyboard and mouse of the host system. 

Since graphics processing consumes many processor cycles, perhaps the most interesting virtual model is VIRTIO_GPU. It offloads 
OpenGL commands to the host machine’s GPU providing a significant performance boost when running graphics intensive operating 
systems such as Android and applications with high GPU requirements, for example, by running 2D and 3D graphics applications like 
Angry Birds on a virtual prototype in near real time. Figure 3 shows an example of how this works. The OpenGL calls from the app 
are handled by the Direct Rendering Manager (DRM), the part of the Linux kernel responsible for interfacing with GPUs. The Linux 
virglrenderer then interacts with the host GPU to provide hardware-accelerated OpenGL to the virtual prototype.

Application

OpenGL (ES)

Kernel

Virtualizer

virglrenderer

Guest

Host

DRM Driver

VIRTIO_GPU

 

Figure 3: Example of VIRTIO_GPU usage



4

Industry-Leading Features

Checkpoint Restore

Synopsys Virtualizer Studio provides several unique features that make development and use of virtual prototypes both easier and 
more flexible. One example is the ability to checkpoint and restore the state of a platform test run. Users can select interesting points 
to save the current state and then later recover from that same state and continue the run. This supports several valuable use cases:

•	 Skipping past long initialization phases

•	 Enabling more tests to be run in a test cycle

•	 Jumping ahead to points of interest

•	 Saving error conditions and quickly reproducing them

•	 Tracking down failures in long runs

Users may set up their runs to take regular snapshots of the system state during long tests. If a failure occurs, the saved states can 
be used during debug to accurately locate the point of the failure and to quickly get back to the state of the system just before the 
failure occurred. Figure 4 shows the setup to take advantage of the checkpoint/restore capability.

Compute Cluster

Test ReportCheckpoint

Create Access Create

Virtual Prototype

Checkpoint created once,
used multiple times

 

Figure 4: Checkpoint and restore in Virtualizer Studio

Efficient Software Debugging

As mentioned earlier, Virtualizer Studio includes a specialized built-in debugger that is extremely helpful when creating or using VDKs. 
VDK Debugger has unique features targeted at efficient co-debug of software and VDKs. It monitors activity within both the hardware 
models and the software, providing the ability to view and analyze both together, correlated in time. It handles both virtual and real-
world I/O devices, offers integration with the popular GNU Debugger (GDB) and integrates with other commercial debugging tools. 
Figure 5 shows just a few of the features that enhance software development productivity on virtual prototypes.



5

-

Software Stack

Synopsys
Virtual Prototype

Synchronization with 
third party software 

debuggers

Hardware and 
software tracing

VDK hardware/
software watch 
and breakpoints

System stepping 
and control

System Hierarchy 
Browser and 
Register View

 



6

Fast Track Bug Detection

A final unique feature of Virtualizer Studio is Fast Track, which is built into VDKs to quickly detect bugs in configuration or usage. 
This is invaluable in detecting and diagnosing situations when the host software is not following the correct procedure for model 
operation. For example, if registers are programmed in an order that violates the specification or if registers are programmed at an 
inappropriate time, Fast Track traces point this out. Fast Track reports configuration violations, warns of potential fault conditions 
and indicates the software routine that is behaving incorrectly. This allows the software team to debug the problem quickly, pinpoint 
the issue and take steps to fix it. Fast Track also provides unique visibility into VDKs by tracing the details of operation. This supports 
efficient debug of issues found during end-to-end software testing, from apps down to hardware dependent software.

Support for CI and CD
Because continuous integration and continuous deployment are becoming widely adopted by programmers, it is important that any 
virtual prototype used for software development supports these techniques. CI is the practice of merging all working copies of the 
software into a shared mainline codebase several times a day. This accelerates development by reducing the effort needed to merge 
and synchronize the updates from multiple programmers. The integration process includes quality metrics such as code analysis, 
coverage and performance. A tool such as Jenkins automates the process of building and testing the code while providing a path to 
CD. If the software is in a constant state of being available for release to customers, then deployment can be automated as well, as 
shown in Figure 7.

Code done

Deploy to 

Unit tests Integrate

Acceptance 

Continuous Delivery

Continuous Deployment

Auto Auto

Auto Auto Auto Auto

Manual

Source repository 

Result

Build

Test

Result

CI server

Acceptance
test 

Deploy to
production 

Code done Unit tests Integrate Acceptance
test 

Deploy to
production 

Check-in

Auto

 

Figure 7: Continuous integration and continuous deployment

Virtualizer Studio supports CI and provides much of the automation needed. Python application programming interfaces (APIs) are 
available for all features, so tool operations can be scripted. Software build and test systems can use Python scripts to integrate with 
Virtualizer Studio, for example to configure, start and cleanly shut down a test run. This makes it possible to set up regression runs 
using virtual prototypes, including cloud deployment. Synopsys provides specific APIs to support regression runs and CI flows. Since 
Virtualizer Studio is based on Eclipse, it is easy to install plug-ins and to integrate with build and test tools, including Jenkins, and with 



©2021 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available 
at synopsys.com/copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners.
09/01/21.CS729033842-sw-develop-wp. Pub: August 2021


